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Abstract
Computer simulation of the time evolution in a classical system is a standard numerical method, used in numerous scientific articles
in Natural Science. Almost all the simulations are performed by discrete Molecular Dynamics (MD). The algorithm used in MD was
originally formulated by I. Newton at the beginning of his book Principia. Newton’s discrete dynamics is exact in the same sense as
Newton’s analytic counterpart Classical Mechanics. Both dynamics are time-reversible, symplectic, and have the same dynamic
invariances. There is no qualitative difference between the two kinds of dynamics. This is due to the fact, that there exists a ’’shadow
Hamiltonian’’ nearby the Hamiltonian H(q,p) for the analytic dynamics, and where its dynamics can be obtained by an asymptotic
expansion from H(q,p), and where the positions generated by MD are located on the analytic trajectories for the shadow Hamiltonian.

It is only possible to obtain the solution of Newton’s classical differential equations for a few simple systems, but the exact discrete
Newtonian dynamics can be obtained for almost all complex classical systems. Some examples are given here: The emergence and
evolution of a planetary system. The emergence and evolution of planetary systems with inverse forces. The emergence and evolution
of galaxies in the expanding Universe.

The fact that there exist two equally valid formulations of classical dynamics raises the question: What is the classical limit of
quantum mechanics? Discrete molecular dynamics is mathematically different from analytic dynamics. The Heisenberg uncertainty
between the concurrent values of positions and momenta is an inherent property of the discrete dynamics, but the analytic quantum
electrodynamics (QED) is in all manner fully appropriate, and there is a lack of justification for preferring discrete quantum mechanics.

Key Points

• Newton’s discrete Classical Mechanics.

• Invariances in Discrete Molecular Dynamics.

• Discrete Molecular Dynamics and discrete Quantum Mechanics.

• Discrete dynamics of planetary systems.

• Discrete dynamics of galaxies in an expanding Universe.

1 Introduction

In Molecular Dynamics (MD) the movements of atoms and molecules are obtained by Newtonian dynamics1. The trajectories of
atoms and molecules are determined by numerically solving Newton’s equations of motion for a system of interacting particles,
where forces between the particles and their potential energies are calculated using interatomic potentials or molecular mechanics
force fields. The method is widely applied in physics, chemistry, materials science, biophysics, and biochemistry.
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Almost all MD simulations are performed using a simple discrete algorithm, mostly named the Verlet algorithm (Appendix A)2.
But the algorithm also appears under a variety of other names e.g. Leap frog, and in textbooks for MD 3,4 the algorithm is presented
as a third-order predictor of the positions of the objects in the system. It was, however, Isaac Newton who first formulated the
Discrete Molecular Dynamics algorithm, when he in PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA. (Principia)1 derived
his second law for classical mechanics. The discrete algorithm is not only time-reversible and symplectic, but it has also the same
dynamic invariances for a conservative system (momentum, angular momentum, and energy) as Newton’s analytic dynamics. So
the dynamics obtained by the algorithm is exact in the same sense as an exact solution for Newton’s analytic Classical Mechanics.
Furthermore, the dynamics obtained by Newton’s analytic classical mechanics and his discrete molecular dynamics are qualita-
tively equal, because there exists a shadow Hamiltonian nearby the Hamiltonian for the analytic dynamics, and for which the
discrete positions are placed on the analytic trajectories for the shadow Hamiltonian5.

In the chapter on Discrete Molecular Dynamics we first in Section 2 present Newton’s formulation of the analytic classical
dynamics and the discrete dynamics in Principia. The proof that the two complementary formulations of classical dynamics, the
analytic dynamics, and the discrete dynamics have the same dynamical invariances, is given in Section 3.1. The connection
between the two kinds of dynamics, given by the existence of a shadow Hamiltonian, is given in Section 3.2. The mathematical
difference between the two formulations and the connections with discrete quantum mechanics is presented in Section 3.3. In
Section 4 there are three examples of exact discrete molecular dynamics for complex systems. The examples are Section 4.1. The
emergence and evolution of a planetary system. 4:2: The emergence and evolution of planetary systems with inverse forces.
Section 4.3. The emergence and evolution of galaxies in the expanding Universe. The article ends with a conclusion in Section 5.

2 Newtonian Dynamics

Isaac Newton (1643–1727) published PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA (Principia)1 in 1687, where he
formulated the equations for the classical analytic dynamics of objects. Principia was reprinted in 1713 with errors of the 1687
edition corrected, and in an improved version in 1726.

2.1 Principia

The first edition of Principia contains 510 pages, many with figures and geometrical proofs of the dynamics of a celestial object.
Principia starts with DEFINITIONES, where Newton defines matter (mass) motion (momentum) and force, and in the next section
Newton’s three laws are postulated in AXIOMATA sive LEGES MOTUS on page 12–25, and with detailed explanations in Corollary
I-VI. The English translation6 of the Latin formulation of Newton’s second law is.

The alteration of motion(momentum) is ever proportional to the motive force impressed; and is made in the direction of the right line in
which that force is impressed.

Expressed with Newton and Leibniz’s algebra the second law for the differential change of the momentum p of a mass center
due to a force F is

dpðtÞ
dt

¼ FðrðtÞÞ ð1Þ

After the section with the axioms of his three laws and the corollaries follows a section on pages 26–36, De MOTU CORPORUM
(OF THE MOTION OF BODIES), where Newton in eleven lemmas treats the connections between infinitesimals and the limiting
procedure for analytic curves.

Newton’s second law for classical analytic mechanics as well as his discrete dynamics are presented in the succeeding section in
Proposition I at page 37 and Proposition VI at page 44.

2.2 Proposition I and Proposition VI

Newton’s classical mechanics with the two Propositions starts with the heading Of the Invention of Centripetal Forces. Proposition I is a
derivation/illustration of Newton’s second law and how to obtain the analytic orbit of a mass center by Newton’s discrete
dynamics. Proposition I is the central point in Principia, although it is presented as a geometrical proof of some equalities between
areas in his discrete dynamics. The text was illustrated by a figure (Fig. 1). Newton supplemented the proof in a succeeding
proposition, Proposition VI, by considering the change of the position of a mass center on an analytic orbit caused by an analytic
centripetal force.

The English translation of Proposition I is:
PROPOSITION I. Theorem I.
The areas, which revolving bodies describe by radii drawn to an immovable center of force do lie in the same immovable planes, and are

proportional to the times in which they are described.
For suppose the time to be divided into equal parts, and in the first part of time let the body by its innate force describe the right line AB. In the

second part of that time, the same would (by Law I.), if not hindered, proceed directly to c, along the line Bc equal to AB; so that the radii AS, BS, cS,
drawn to the center, the equal areas ASB, BSc, would be described. But when the body is arrived at B, suppose that a centripetal force acts at once with
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a great impulse, and, turning aside the body from the right line Bc, compels it afterwards to continue its motion along the right line BC. Draw cC
parallel to BS meeting BC in C; and at the end of the second part of the time, the body (by Cor. I of Laws) will be found in C, in the same plane with
the triangle ASB. Join SC, and, because SB and Cs are parallel, the triangle SBC will be equal to the triangle SBc, and therefore also to the triangle
SAB. By the like argument, if the centripetal force acts successively in C, D, E, & c., and makes the body, in each single particle of time, to describe the
right lines CD, DE, EF, & c., they will all lie in the same plane; and the triangle SCD will be equal to the triangle SBC, and SDE to SCD, and SEF to
SDE. And therefore, in equal times, equal areas are described in on immovable plane: and, by composition, any sums SADS, SAFS, of those areas, are
one to the other as the times in which they are described. Now let the number of those triangles be augmented; and their breadth diminished in
infinitum; and (by Cor. 4, Lem III) their ultimate perimeter ADF will be a curve line: and therefore the centripetal force, by which the body is
perpetually drawn back from the tangent of this curve, will act continually; and any described areas SADS, SAFS, which are always proportional to the
times of description, will, in this case also, be proportional to those times. Q. E. D.

The text can be expressed with Newton’s and Leibniz’s algebra. The time is changed with a discrete and constant time increment
δt. The body with mass m is at the position A: rðt � δtÞ at time t � δt , at position B: rðtÞ at time t and position C: rðt þ δtÞ at time
t þ δt. The momenta pðt þ δt=2Þ ¼mðrðt þ δtÞ � rðtÞÞ=δt and pðt � δt=2Þ ¼mðrðtÞ � rðt � δtÞÞ=δt are constant in the time intervals
in between the discrete positions. In vector notation Proposition I is

BC
- ¼ Bc

- þ cC
-
; ð2Þ

and the momentum is changed at B by (Fig. 1)

m
rðt þ δtÞ � rðtÞ

δt
¼m

rðtÞ � rðt � δtÞ
δt

þ δtfðtÞ: ð3Þ

One obtains the Verlet algorithm by a rearrangement of Eq. (3) (see Appendix A)

rðt þ δtÞ ¼ 2rðtÞ � rðt � δtÞ þ δt2

m
fðtÞ: ð4Þ

The corresponding ’’Leap-frog" algorithm is

pðt þ δt=2Þ ¼ pðt � δt=2Þ þ δtf ðtÞ

rðt þ δtÞ ¼ rðtÞ þ δt
m
pðt þ δt=2Þ: ð5Þ

Newton notices that the relation, Eq. (3) for the dynamics holds for any value of δt, and the differential equation for the change
in momentum of a mass m on a classical analytic orbit (Eq. (1)) is obtained as the limit limδt-0 of Eq. (3).

Newton published the two new editions of Principia with corrections and additions, but he never changed anything in the
formulation of Proposition I. There are, however, several things to note about the formulation:

1. The equality of the areas of the triangles is a consequence of the conservation of the angular momentum,7 and Newton was
aware of this fact. In astronomy, it is Kepler’s second law for the Solar system, but Newton did not mention this important fact
in Proposition I.

2. The equality of the areas plays no role in obtaining the analytic dynamics.
3. The formulation is for discrete dynamics. But the discreteness is not only in time, space, and momentum, but also the force acts

discrete: ..suppose that a centripetal force acts at once with a great impulse,...(Notice at once).

Fig. 1 Newton’s figure at Proposition I in Principia, with the formulation of the discrete dynamics. The discrete positions are A: rðt � δtÞ; B:
rðtÞ; C: rðt þ δtÞ, etc. The deviation cC from the straight line, ABc (Newton’s first law) is caused by a force from the position S at time t .
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When Newton formulated the second law, he must immediately have realized that his discrete relation Eq. (3) at least explains Kepler’s
second law. But he did not mention it at the derivation of the second law, nor in his second- or third editions of Principia. An explanation
for this omission could be, that Newton believed that the exact classical dynamics first is achieved in the analytic limit with continuous
time and space. But this is in fact not the case, his discrete dynamics have the same invariances as his analytic dynamics (see Section 3).

Newton returned in Proposition VI to the determination of the analytic orbit of an object exposed to a centripetal force. The
figure at Proposition VI in Principia (Fig. 2) shows the analytic orbit (APQ) of a mass center continuously attracted by a centripetal
force from a force center at S. Newton proved that a tangential deviation RQ

�!
from the analytic orbit after a time increment δt is

proportional to δt2 and thus vanishes in the limit limδt-0.
8

Proposition I is the central point in Principia, although it is presented as a geometrical proof of some equalities between areas in
discrete dynamics. Proposition I and the relation with Proposition VI have played a crucial role in the history of Principia and classical
mechanics. The prehistory and genesis of Principia is given in a recent and excellent review article by Michael Nauenberg.9 The
present article concerns the actual difference between the two formulations of classical dynamics.

In Summary: Proposition I is Newton’s discrete dynamics and Proposition VI is for Newton’s Classical Mechanics. As will be
shown in the next section both dynamics are exact and the two dynamics are qualitatively equal despite the fact that they
mathematically are different.

2.3 The Emergence and History of Proposition I and Proposition VI and Newton’s Second Law

Newton submitted in 1684–1685 a draft, De Muto Corporum of Principia to Edmond Halley and the Royal Society, and he and Robert
Hooke used in the period 1679–1684 the geometrical construction of discrete dynamics to obtain the orbits of mass centers exposed to a
discrete centripetal force.9 The relationship between Newton and Hooke and the emergence of Propostition I and Newton’s second law have
given rise to an extensive debate right up to our time.10–15 Robert Hooke has without any doubt inspired Newton according to M.
Nauenberg, although Newton not acknowledged Hooke’s role in the formulation of Propostition I and Newton’s second law.

Propostition I is the algorithm for Discrete Molecular Dynamics, whereas Propostition VI expresses the first-order deviation of
the position by a discrete move from the analytic orbit. The equivalence of Propostition I and Propostition VI was debated already
shortly after the publication of Principia among leading scientists (e.g. Leibniz and Huygens).16,17

Newton’s second law is traditionally not given by Eq. (1), but as an equality between the acceleration a and force

FðtÞ ¼maðtÞ ¼m
d2rðtÞ
dt2

: ð6Þ

This algebraic formulation of Newton’s second law was, however, first given after Newton’s dead 1727 by Euler in 173618.

3 Newton’s Discrete and Analytic Dynamics

Newton’s Classical Mechanics is the exact formulation of the classical analytic dynamics of objects exposed to forces. The dynamics
are obtained by solving the second-order differential equations Eq. (6) for N objects. The ’’exactness’’ is given by some qualities:
the analytic dynamics is time reversible, symplectic, and with three invariances for a conservative system of N objects. The total
momentum, angular momentum, and energy of a conservative system are conserved. Here we shall first show (Subsection 3.1),
that Newton’s discrete dynamics, obtained by solving the corresponding discrete equations, Eq. (3), has the same quality and thus
is exact in the same sense as his analytic classical mechanics.

The analytic and the discrete dynamics is, however, most likely connected by the existence of a shadow Hamiltonian for
analytic dynamics,5 where the positions obtained by discrete dynamics are on the trajectories for the shadow Hamiltonian. The
indication of an existence of a shadow Hamiltonian is given in Subsection 3.2. An existence implies that the classical dynamics
obtained by analytic and discrete dynamics, respectively, are qualitatively similar. But the discrete dynamics and the analytic
dynamics are, however, mathematically different and fundamentally with different physics. The difference between the two kinds
of dynamics and the relation with quantum mechanics is given in Subsection 3.3.

Fig. 2 Figure in Principia illustrating Proposition VI.
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3.1 Newton’s Discrete Dynamics

Newton’s discrete dynamics for a simple system of N spherically symmetrical objects with masses mN � m1;m2; ::;mi; ::;mN and
positions rNðtÞ � r1ðtÞ, r2ðtÞ; ::;riðtÞ; ::rNðtÞ is obtained by Eq. (3). Let the force, Fi on object No i be a sum of pairwise forces fij
between pairs of objects i and j

Fi ¼
XN
ja i

f ij: ð7Þ

Newton’s discrete dynamics, Eq. (3) is a central difference algorithm and it is time symmetrical, so the discrete dynamics is time
reversible and symplectic.19

The momentum for a conservative system of the N objects is conserved since (Eq. (3))

XN
i

mi
riðt þ δt=2Þ � riðtÞ

δt
¼
XN
i

piðt þ δt=2Þ ¼ ð8Þ

XN
i

piðt � δt=2Þ þ δt
XN
i;ja i

f ijðtÞ ¼
XN
i

piðt � δt=2Þ:

(
PN

i;ja i f ijðtÞ ¼ 0 with f ijðtÞ ¼ � f jiðtÞ due to Newton’s third law).
The discrete positions and momenta are not known simultaneously. An expression for the angular momentum of the con-

servative system is

LðtÞ ¼
XN
i

riðtÞ � ðpiðt þ δt=2Þ þ piðt � δt=2ÞÞ=2

¼
XN
i

riðtÞ � ðmiriðt þ δtÞ �miriðt � δtÞÞ=2δtÞ: ð9Þ

The angular momentum is conserved since (using riðtÞ � ðf ijðtÞ þ f jiðtÞÞ ¼ 0; a� a¼ 0; a� b¼ � b� a and Eq. (4))

2δtLðtÞ ¼
XN
i

riðtÞ � ðmiriðt þ δtÞ �miriðt � δtÞÞ

¼
XN
i

miriðtÞ � ð2riðtÞ � 2riðt � δtÞÞ ¼
XN
i

miriðt � δtÞ � ðriðtÞ þ riðtÞÞ

¼
XN
i

miriðt � δtÞ � ðriðtÞ � riðt � 2δtÞÞ ¼ 2δtLðt � δtÞ: ð10Þ

The energy in analytic dynamics is the sum of potential energy UðrNðtÞÞ and kinetic energy KðtÞ, and it is an invariance for a
conservative system. The kinetic energy in the discrete dynamics is, however, ill-defined since the velocities at time t are not known.
Traditionally one uses the expressions

viðtÞ ¼ riðt þ δtÞ � riðt � δtÞ
2δt

ð11Þ

K0ðtÞ ¼
XN
i

1
2
miviðtÞ2 ð12Þ

E0ðtÞ ¼UðrNðtÞÞ þ K0ðtÞ ð13Þ
for the velocity, kinetic energy KðtÞ, potential energy UðrNðtÞÞ and energy EðtÞ in MD. But the total energy obtained by using Eq.
(13) with KðtÞ ¼ K0ðtÞ for the kinetic energy fluctuates with time although it remains constant, averaged over long time intervals.
This is due to the fundamental quality of Newton’s discrete dynamics, where the positions and momenta appear asynchronous.

The energy invariance, ED in the discrete dynamics can, however, be seen by considering the change in kinetic energy, δKD;

potential energy, δUD; and the work done by the force in the time interval ½t � δt=2;t þ δt=2�: The loss in potential energy, �δUD is
defined as the work done by the forces at a move of the positions .20 An expression for the work, WD done in the time interval by
the discrete dynamics from the position ðriðtÞ þ ðriðt � δtÞÞ=2 at t � δt=2 to the position ðriðt þ δtÞ þ riðtÞÞ=2 at t þ δt=2 with the
change in position ðriðt þ δtÞ � riðt � δtÞÞ=2 is 21

�δUD ¼WD ¼
XN
i

f iðtÞðriðt þ δtÞ � riðt � δtÞÞ=2: ð14Þ
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By rewriting Eq. (4) to

riðt þ δtÞ � riðt � δtÞ ¼ 2ðriðtÞ � riðt � δtÞÞ þ δt2

mi
f iðtÞ; ð15Þ

and inserting in Eq. (14) one obtains an expression for the total work in the time interval

�δUD ¼WD ¼
XN
i

ri tð Þ � ri t � δtð Þð Þf i tð Þ þ δt2

2mi
f iðtÞ2

� �
: ð16Þ

The change in kinetic energy in the time interval ½t � δt=2;t þ δt=2� is

δKD ¼
XN
i

1
2
mi

ðriðt þ δtÞ � riðtÞÞ2
δt2

� ðriðtÞ � riðt � δtÞÞ2
δt2

" #
: ð17Þ

(In time intervals without forces the dynamics follow Newton’s first law.) By rewriting Eq. (4) to

riðt þ δtÞ � riðtÞ ¼ riðtÞ � riðt � δtÞ þ δt2

mi
f iðtÞ ð18Þ

and inserting the squared expression for riðt þ δtÞ � riðtÞ in Eq. (17), the change in kinetic energy is

δKD ¼
XN
i

ðriðtÞ � riðt � δtÞÞf iðtÞ þ δt2

2mi
f iðtÞ2

� �
: ð19Þ

The energy invariance in Newton’s discrete dynamics is expressed by Eqn. (16), and Eq. (19) as21

δED ¼ δUD þ δKD ¼ 0; ð20Þ
where the difference in energies,

PN
i

δt2
2mi

f i tð Þ2, between the analytic and the discrete energies at time t only depends on the square
of the forces and time increment.

In summary: Newton’s discrete dynamics is time reversible and symplectic, and the discrete dynamics for a conservative system
has the same invariances as the corresponding analytic dynamics. Newton’s discrete dynamics is exact in the same sense as
Classical Mechanics.

3.2 The Connection Between the Discrete and the Analytic Dynamics

The classical analytic dynamics, determined by the second order differential equation Eq.(6) can only be solved for a few systems,
e.g., a harmonic oscillator

xðtÞ ¼ AsinðotÞ: ð21Þ
The corresponding difference equation for a discrete harmonic oscillator can, however, also be solved and the solution reveals

the existence of a shadow Hamiltonian, ~H.5 The discrete positions are located on a harmonic curve

xðtÞ ¼ ~Asinð~otÞ: ð22Þ

Fig. 3 The dynamics for a one dimensional oscillator. In blue is the analytic curve, Eq. (21), and the green curve is for the shadow Hamiltonian,
Eq. (24). The discrete positions with green dots are generated by Eq. (23) for a big time increment with E four discrete positions per oscilllations.
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The solution in5 was obtained directly from the discrete points and without any use of an expansion of an analytic Hamil-
tonian Hðr;pÞ by noticing that if the discrete dynamics

xðt þ δtÞ ¼ 2xðtÞ � xðt � δtÞ � o2δt2xðtÞ ¼ axðtÞ � xðt � δtÞ; ð23Þ
with a¼ 2� o2δt2 is started with positions xð0Þ ¼ 0 and xðδtÞ ¼ A sinðoδtÞ, then the generated discrete points lie on a harmonic
curve Eq. (22), with the frequency ~o and amplitude ~A given by

~o ¼ cos�1 1� oδtð Þ2
2

 !
=δt

~A ¼ A sinðoδtÞ
sinð~o δtÞ; ð24Þ

i.e. with the harmonic shadow Hamiltonian, ~Hð~oÞ with xðtÞ ¼ ~Asinð~otÞ and the energy ~E ¼ ð~A ~oÞ2=2. Eq. (24) sets, however, a
limit to the discrete dynamics, given by δt. The discrete dynamics are stable for

1� o2δt2max

2

����
����r1: ð25Þ

or

δtmaxr
2
o
: ð26Þ

Fig. 3 shows the positions of the one-dimensional harmonic oscillations in the time interval tA½25;35� after E six oscillations
from xð0Þ ¼ 0 at the start at t ¼ 0. The solution is for A¼o¼ 1 and a big time increment, for which ~A ¼ 1:00119889 and
~o ¼ 0:98983513, and the energies are E¼ 0:5 and ~E ¼ 0:49106, respectively. The discrete positions (green dots) are obtained by
the discrete dynamics Eq. (23), and the green curve is xðtÞ ¼ ~Asinð~oÞ for the shadow Hamiltonian ~Hð~oÞ. The blue curve is the
harmonic solution Eq. (21). The discrete dynamics only generates E 4 positions per oscillation.

The existence of a shadow Hamiltonian is a general property of discrete symplectic dynamics. Mathematical investigations have
established22–25 that, if a discrete algorithm is symplectic, then there exists a shadow Hamiltonian, ~Hðr;pÞ for sufficient small δt such
that the discrete positions rðnδtÞ, for an object, generated by the symplectic algorithm, lie on the analytic trajectory for the object
obtained by ~HðrðtÞ;pðtÞÞ.

Newton’s discrete algorithm, Eq. (3), is symplectic and the first non-trivial term in the asymptotic expansion was obtained
for the LJ system in.5 The term was obtained from consecutive sets of positions using the expression obtained from the
expansion of H for a one-dimensional harmonic oscillator. Ref. 26 gives the general expression for the first term in the
expansion using the method of modified equations derived in Refs. 22–25. The Hessian, ∂2UðrNÞ=∂r2, of the potential energy
function UðrNÞ is denoted by J, the velocities of the N particles by vN � ðv1; :::;vNÞ, and the force at positions rN by
FNðrNÞ � ðf1ðrNÞ; :::;fNðrNÞÞ. Using Eq. (13) for vN , the first term in the asymptotic expansion at the n’th time step can be
expressed as 27

~EðtnÞCE0ðtÞ þ δt2

12
ðvNn ÞT JðrNn ÞvNn � δt2

24m
FNn ðrNn Þ2

¼ E0ðtÞ þ E1ðtÞ ð27Þ
for the the energy, E0 þ E1, at time t ¼ nδt. The zero-order term is the discrete energy E0 (Eq. (13)) used in MD. The detailed
expression for the first order term E1 in the asymptotic expansion for a system with pair interactions is given in.27

The existence of a shadow Hamiltonian for classical dynamics can be demonstrated by MD for a system of particles with
Lennard-Jones (LJ) pair interactions

uðrijÞ ¼ 4� rij=s
� ��12 � rij=s

� ��6
h i

: ð28Þ

The energy conservation in discrete dynamics for a system of N particles with LJ interactions is shown in Fig. 4. The energies are
for a system of N ¼ 2048 particles in a liquid state with the number density r¼ 0:80 and temperature T ¼ 1:00 (for units of length,
time, and energy in MD see28). The energies in the figure are for 150 time steps with δt ¼ 0.005 and shown from a configuration
(at t ¼ t0) where E0ðt0ÞEE0ðt0Þ þ E1ðt0Þ. The energy estimate E0ðtÞ used in almost all MD simulations is shown in blue. The first
order expression Eq. (27)5,27) is shown in green, and the constant energy ~EðtÞ ¼ ~Eðt0Þ þ SnδEðnδtÞ of the shadow Hamiltonian for
the discrete dynamics21 is with red. (The shadow energy ~Eðt0Þ is not known, and ~EðtÞ in the figure is E0ðt0Þ þ E1ðt0Þ þ δEðnδtÞ with
δEðnδtÞ given by Eqs. (14) and (17)). The first order correction E1ðtÞ of the energy decreases the fluctuations in the energy with a
factor of hundred5,27 and the difference δð~EðtÞ � ðE0ðtÞ þ E1ðtÞÞÞ from the energies of the higher-order term in the expansion can
not be seen in the figure but is visible in the inset.

Simulations for different state points and time increments indicate, that the energy at the asymptotic expansion rapidly
converges towards ~Eðr;TÞ for time increments used in MD.27 In Fig. 5 the means of the energy amplitudes ojEðtnÞ �oEðtnÞ4j4
in the LJ system, (the amplitudes for δt ¼ 0:005 are shown in Fig. 4) are plotted as a function of the time increment δt. The green
dots are the amplitudes for EðtnÞ ¼ E0ðtnÞ þ E1ðtnÞ and the blue dots are for EðtnÞ ¼ E0ðtnÞ. Systems of liquids of LJ particles or mass
units in molecules for e.g. carbon atoms in organic molecules have ’’vibration times" of the order E10�12 sec, and the maximum

Discrete Molecular Dynamics 335

Author's personal copy



time increment used in these MD simulations are δtmaxE0:005E10�14 sec, used by L. Verlet in 1967 in the first discrete Newtonian
MD2. It corresponds to of the order a hundred discrete positions for a typical ’’vibration"; but most MD simulations are, however,
with smaller time increments. The data in Figs. 4 and 5 indicate that the asymptotic expansion is rapidly converging for these
values of the time increment and that the energies are well determined by E0ðtnÞ þ E1ðtnÞ as well as by E0ðtnÞ.

In summary: There exists most likely a shadow Hamiltonian for discrete molecular dynamics, and the asymptotic expansion is
rapidly converging for the time increments used in discrete molecular dynamics. The existence of a shadow Hamiltonian implies
that there is no qualitative difference between the analytic Classical Mechanics and the discrete Newtonian dynamics. The two
kinds of dynamics are, however, mathematically different (see next subsection).

Fig. 5 The mean amplitudes, ojEðtnÞ �oEðtnÞ4j4, of the energy in a LJ system at r¼ 0:80 and T ¼ 1:00 as a function of the time-increment δt in
a log � log plot29. The green dots are for the first order estimate, Eq. (27), of the shadow energy E0 þ E1 and blue dots are for E0. The lines through the
green and blue dots have slopes of five and three, respectively. δtmax ¼ 0:005 is used in the first discrete Newtonian MD simulation in 1967 by L. Verlet2.

Fig. 4 Energies at 150 time steps with the discrete dynamics for a system of Lennard-Jones particles. The traditional energy E0ðtÞ used in MD
simulations is shown in blue. The first order expression for the shadow energy E0ðtÞ þ E1ðtÞ, Eq. (27), is shown in green, and the constant
shadow energy energy ~E ðt0Þ þ SnδEðnδtÞ, Eq. (20), is shown with red. The energies E0ðtÞ þ E1ðtÞ and ~E ðt0Þ þ δEðtÞ are enlarged in the inset.
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3.3 The Difference Between Classical Mechanics and Discrete Newtonian Dynamics

The dynamics obtained by Classical Mechanics or discrete Newtonian dynamics are qualitatively equal, despite the fact that they
mathematically are fundamentally different. The difference between the two dynamics can perhaps best be seen by rewriting
Proposition I

rðt þ δtÞ � rðtÞ ¼ rðtÞ � rðt � δtÞ þ δt2fðrðtÞÞ=m; ð29Þ
and

rðt þ δtÞ ¼ rðtÞ þ δtðrðt þ δtÞ � rðtÞÞ ð30Þ

where the new position rðt þ δtÞ is obtained from the old position rðtÞ by that the difference with the previous positions is
adjusted by a force quantum δt2fðrðtÞÞ=m. Or as Newton expressed it: ..suppose that a centripetal force acts at once with a great impulse.
The time and space are discretized in Proposition I and connected by a quant of the square of the time quant and the ratio between
the force and the mass.

It is only the positions, the time, and the force that appear in the dynamics, Eqs. (29) and (30). The momenta are not dynamic variables in
discrete dynamics.

Although Newton starts Principia with his first law for momenta and refers to the law in the formulation of Proposition I, the
momenta do not enter into the dynamics, but they play a role as a ’’bookkeeping" registration during the time evolution. In
Newton’s analytic dynamics, the momenta are, however, also dynamic variables, and due to this fact, the analytic dynamics can be
reformulated to Lagrangian mechanics.30

Classical Mechanics is the analytic limit dynamics of nonrelativistic quantum mechanics,31 and the question is: Could the discrete
Newtonian dynamics be a corresponding limit dynamics of discrete nonrelativistic quantum mechanics? Noble Laureate T. D. Lee
wrote in 1983 a paper entitled, "Can Time Be a Discrete Dynamical Variable?".32 The article led to a series of publications by Lee and
collaborators on the formulation of fundamental dynamics in terms of difference equations, but with exact invariance under
continuous groups of translational and rotational transformations. Quoting Lee,33 he "wish to explore an alternative point of view:
that physics should be formulated in terms of difference equations and that these difference equations could exhibit all the desirable
symmetry properties and conservation laws". Lee’s analysis covers not only classical mechanics,32 but also non-relativistic quantum
mechanics and relativistic quantum field theory,34 and Gauge theory and Lattice Gravity.33 Lee’s discrete dynamics is obtained by
treating only the positions but not the momenta as discrete dynamical variables, as is the case in discrete Newtonian dynamics.

The discrete nonrelativistic quantum mechanics is obtained by Lee using Feynman’s path integration formalism, but for
discrete positions and a corresponding discrete action,

AD ¼
XNþ1

n ¼ 1

ðtn � tn�1Þ 1
2
ðrNn � rNn�1Þ2
ðtn � tn�1Þ2

þ VðnÞ
" #

; ð31Þ

where rNNþ1 is the end-positions at time tNþ1 and the minimum of AD determines the classical path. According to Lee, the action is
a sum over products of time increments and energies with "kinetic energies" and VðnÞ, for the average of "potential energy" in the
time intervals ½tn�1; tn�. In discrete Newtonian dynamics, it is the action sum over products of time intervals and with the classical
limit energies given by the shadow Hamiltonians in the time intervals

~EðtÞ ¼ 1
2
ðrNn � rNn�1Þ2
ðtn � tn�1Þ2

þ VðnÞ
" #

: ð32Þ

In Lee’s formulation of discrete mechanics, "there is a fundamental length l or time tl (in natural units). Given any time interval
T ¼ tf � t0, the total number N of discrete points that define the trajectory is given by the integer nearest T=l." The classical discrete
trajectory is the classical limit path for discrete quantum mechanics with δt ¼ tl, as the classical analytic trajectory is for traditional
quantum mechanics. There is, however, one important difference between analytic and discrete dynamics. The momenta
for all the paths in the discrete quantum dynamics aŕe not dynamic variables. They are obtained by a difference between discrete
sets of positions and they are all asynchronous with the positions. So the Heisenberg uncertainty principle is a trivial consequence of
Lee’s discrete quantum dynamics. The fundamental length and time in quantum electrodynamics (QED) are the Planck length
lPE1:6� 10�35m and Planck time tPE5:4� 10�44 s,35 and they are immensely smaller than the length unit and time increments
used in MD to generate the classical discrete dynamics. But the analogy implies that the discrete Newtonian dynamics is the
classical limit of the Lee’s discrete non-relativistic quantum mechanics.

In Newton’s discrete dynamics, the contributions from the forces are also discretized. T. Regge and R. M. Williams have
analyzed the dynamical implications of a discretized gravitational force36.

In summary: Newton’s discrete and analytic dynamics are mathematically different. The fact that the positions and momenta
are asynchronous implies, that it could be that discrete dynamics in principle is the correct classical limit dynamics of a discrete
quantum dynamics. But the energy difference, Eq. (20), between the two kinds of classical dynamics are, however, proportional to
t2P and incredibly small, and since there is no qualitative difference between the two classical dynamics, there is a lack of
justification for preferring the discrete quantum mechanics.
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4 Discrete Molecular Dynamics

Almost all MD simulations are performed with Newton’s discrete algorithm, Eq. (3). The MD algorithm is, however, hardly
mentioned in the simulations. The simulations are stable at the time propagation, and the focus in the articles is on the physics of
the MD systems rather that on the computational method. And with good reason because the algorithm offers an exact time
propagation of the MD models provided that the time step is not too big so that the asymptotic expansion no longer converges.
The data of the simulated models depends primarily on the quality of the expressions for the forces and the molecular mechanics
force fields used in the simulations, and not on the discrete dynamics.

There are, however, some factors that can affect the exactness of the time propagation. The positions are in the best cases given
in ’’double-precision" with the order E10�16 relative accuracy, and the round-off errors in long simulations generate cumulative
errors in the numerical integration. The accumulations will, however, normally not affect the results obtained by the simulation,37

and the round-off errors can optionally be avoided by performing the MD simulation with integer arithmetic.38

Most MD simulations contain approximations of the forces and the size of the systems with the result, that the simulations no
longer are exact, but have to be adjusted e.g. for energy conservation. The range of the interactions is often set to zero at a
sufficiently large distance, and this approximation causes a small drift in the energy. The interactions are usually restricted at these
large distances by a ’’cut and shift" of the potentials, but since it is the forces that enter into the algorithm it is much better to cut
and shift the range of the forces.39 A cut in the potentials introduces new ’’Delta function" forces in the systems and they perform a
work on the system according to Eq. (16). This will affect the energy conservation and show up as a small drift in the temperatures
of the systems unless one uses a thermostat, which one, however, usually do.

The MD computational method is described in.3,4 This section is ended by showing some examples where the exactness of the
dynamics is used to obtain the exact dynamics of complex systems. The differential equation(s) for the analytic dynamics in
Classical Mechanics can only be solved for a few simple systems, but the discrete Newtonian dynamics with the algorithm, Eq. (3),
offers a general method for obtaining exact discrete solutions, e.g. regular solutions of complex systems of celestial objects. Three
examples are given here: 4:1 The emergence and evolution of planetary systems. 4:2 The emergence and evolution of planetary
systems with inverse forces. 4:3 The emergence and evolution of galaxies in the expanding Universe.

4.1 The Emergence and Evolution of a Planetary System

According to Newton’s shell theorem40 the force, Fi, on a spherically symmetrical object i with massmi is a sum over the forces, f ðrijÞ,
caused by the other spherically symmetrical objects j with mass mj, and it is solely given by their center of mass distance rij to i

FiðrijÞ ¼
XN
ja i

f ðrijÞ ¼ �
XN
ja i

Gmimj

r2ij
r̂ij: ð33Þ

Newton’s discrete algorithm can be extended to include a ’’perfect" fusion of mass objects.41 Let all the spherically symmetrical
objects have the same (reduced) number density r¼ ðp=6Þ�1 by which the diameter si of the spherical object i is

si ¼m1=3
i ð34Þ

and the collision diameter

sij ¼ si þ sj
2

: ð35Þ

If the distance rijðtÞ at time t between two objects is less than sij the two objects merge into one spherical symmetrical object
with mass

ma ¼mi þmj; ð36Þ
and diameter

sa ¼ mað Þ1=3; ð37Þ
and with the new object a at the position

ra ¼ mi

ma
ri þ mj

ma
rj; ð38Þ

at the center of mass of the two objects before the fusion. (The object a at the center of mass of the two merged objects i and j
might occasionally be near another object k by which more objects merge, but after the same laws.) Let the center of mass of the
system of the N objects be at the origin, i.e.

SkmkrkðtÞ ¼ 0: ð39Þ
The momenta of the objects in the discrete dynamics just before the fusion are pNðt � δt=2Þ and the total momentum of the

system is conserved at the fusion if

vaðt � δt=2Þ ¼ mi

ma
viðt � δt=2Þ þ mj

ma
vjðt � δt=2Þ; ð40Þ

which determines the velocity vaðt � δt=2Þ of the merged object.
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The invariances in the classical Newtonian dynamics are for a conservative system with Newton’s third law, i.e with

f klðtÞ ¼ � f lkðtÞ ð41Þ
for the forces between two objects k and l, and with no external forces. An object k’s forces with i and j before the fusion are f ikðtÞ
and f jkðtÞ, and these forces must be replaced by calculating the force f akðrakðtÞÞ. The total force after the fusion is zero due to
Newton’s third law for a conservative system with the forces f ak ¼ � f ka between pairs of objects, and the total momentum

Skpkðtn þ δt=2Þ ¼ Skpkðtn � δt=2Þ þ δtSkf kðtnÞ
¼ Skpkðtn � δt=2Þ; ð42Þ

and the position of the center of mass, Eq. (39), is conserved for the discrete dynamics with fusion.
The determination of the position, raðtÞ, and the velocity, vaðt � δt=2Þ, of the new object from the requirement of conserved

center of mass and conserved momentum determines the discrete dynamics of the N � 1 objects.
The total angular momentum is also not affected by the fusion. The angular momentum of the system of spherically symmetrical

objects consist of two terms

LðtÞ ¼ LGðtÞ þ LSðtÞ ð43Þ
where LGðtÞ is the angular momentum of the objects in their orbits, due to the dynamics obtained from the gravitational (G) forces
between their centers of mass, and LSðtÞ is the angular momentum due to the spin (S) of the objects. Without fusion LGðtÞ is
conserved for Newtons discrete dynamics, Eq. (10). LSðtÞ is, however, also conserved according to the shell theorem,40 where Newton
proves that no net gravitational force is exerted by a shell on any object inside, regardless of the object’s location within the uniform
shell, by which the spin of the object is not affected by any force and is therefore constant. But at a fusion LG changes by

δLGðtÞ ¼ raðtÞ �mavaðt � δt=2Þ � riðtÞ �miviðt � δt=2Þ � rjðtÞ �mjvjðt � δt=2Þ: ð44Þ
and LS changes by

δLSðtÞ ¼ ðriðtÞ � raðtÞÞ �miviðt � δt=2Þ þ ðrjðtÞ � raðtÞÞ �mjvjðt � δt=2Þ

¼ riðtÞ �miviðt � δt=2Þ þ rjðtÞ �mjvjðt � δt=2Þ � raðtÞ �mavaðt � δt=2Þ

¼ � δLGðtÞ: ð45Þ
So without fusion, the angular momenta LSðtÞ and LGðtÞ with Newton’s discrete dynamics are conserved separately, and at a

fusion, the total angular momentum is still conserved but with an exchange of angular momentum with δLSðtÞ ¼ � δLGðtÞ.
The exact classical discrete dynamics with a fusion of colliding objects can be used to explore the self-assembly at the emergence

of planetary systems and to investigate the stability of a planetary system. The emergence and stability of planetary systems were
investigated in,41 and Fig. 6 shows the orbits of the four innermost planets at the end of the simulation in a planetary system with
21 planets in regular orbits around a heavy gravity center. The emergence of the simple planetary system was obtained from
thousand objects relatively close to each other and with a Maxwell Boltzmann distribution of the velocities and with the dynamics
given by the Eqs. (5),(34)-(38) and (40). For the setup and details see,41.

4.2 The Emergence and Evolution of Planetary Systems With Inverse Forces

Newton was aware that the extension of an object can affect the gravitational force between two objects, and in Theorem XXXI in Principia40

he solved this problem for the gravitational inverse square forces (ISF), Eq. (33), between spherically symmetrical objects. Newton’s

Fig. 6 The regular orbits of the four innermost planets in a planetary system. The planetary system contains 21 planets in regular orbits41. The
orbit times (MD time unit) torbit and eccentricity � are: light blue: torbit ¼ 818; �¼ 0:835; green: torbit ¼ 300; �¼ 0:327; blue torbit ¼ 463; �¼ 0:586;
magenta torbit ¼ 313; �¼ 0:768. The green planet has circulated more than four thousand times around the Sun (red).
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theorem is, however, only valid for ISF. But for inverse gravitational forces (IF) and inverse cubic gravitational forces (ICF) one can expand
the contributions in powers of the ratio s=r between the diameters of the objects and their mutual distance. The result is.42

For the IF gravitational forces:

f ijðrijÞC � G1mimj

rij
1� s2i þ s2j

5r2ij

 !
r̂ij þOðr�4

ij Þ ð46Þ

For ISF one obtains the usual expression for the gravitational forces which do not depend on the extensions of the two
spherically symmetrical objects and is given by Eq. (33).

For the ICF gravitational forces:

f ijðrijÞ ¼ � G3mimj

r3ij
1þ 2s2i þ 2s2j

5r2ij

 !
r̂ij þOðr�6

ij Þ: ð47Þ

Planetary systems with IF attractions were created in the same way as for the usual ISF attractions,42 and the systems were even easier
to create. There is, however, a remarkable difference between the regular orbit in an ordinary planetary system and the regular orbits of
objects in a planetary system with IF forces. Whereas the orbits of the planets in e.g. our Solar system are regular with elliptical orbits, the
orbits in an IF planetary system is what Newton probably would have called ’’revolving orbits". An example is shown in Fig. 7. The
figure shows the orbits at the end of the simulation (t ¼ 2:5� 106) of two of the planets in a planetary system with 38 planets. All the
planets have performed many orbits around the common center of gravity (the ’’Sun" enlarged and with red in the figure), but none of
the orbits were elliptical. They showed different kinds of revolving orbits where the ’’orientation" of the regular orbit was changed when
the planet passed the ’’Perihelion". The orientation of the ’’principal axis" was then changed with E fractions of 2p. For details see.42

The Moon exhibits apsidal precession, which is called Saroscyclus and it has been known since ancient times. Newton shows in
Proposition 43–45 in Principia, that the added force on a single object from a fixed mass center which can cause its apsidal precession
must be a central force between the planet and a mass point fixed in space (the Sun). In Proposition 44 he shows that an inverse-cube
force (ICF) might cause the revolving orbits, and in Proposition 45 Newton extended his theorem to arbitrary central forces by
assuming that the particle moved in a nearly circular orbit.8 The Moon’s apsidal precession is explained by flattering by the rotating
Earth with tide waves, which causes an ICF on the Moon. For Newton’s analysis of the Moon’s apsidal precession see.43

It was, however, not possible to obtain stable regular orbits for systems with pure ICF, but systems with the gravitational ISF
attraction, perturbed by additional ICF showed revolving orbits in qualitative accordance with the dynamics of the Moon.

The conclusion from the investigation in42 is that the gravitational ISF is the limit of attraction, �Gnmimj=rn with respect to the
power n. A system of N objects can only have regular orbits for nr2.

4.3 The Emergence and Evolution of Galaxies in the Expanding Universe

The dynamics of galaxies in an expanding universe are often obtained for gravitational and dark matter in an Einstein-de Sitter
universe,44 or alternatively, by modifying the weak accelerations from gravitation long-range attractions (MOND)45. But the time
evolution of galaxies can also be determined for galaxies with pure gravitational forces by discrete Newtonian dynamics.46 The
time-reversible algorithm for the formation and aging of gravitational systems by self-assembly of baryonic objects in Section 4.1 is
extended to include the Hubble expansion of the space.47 The algorithm is stable for billions of time steps without any

Fig. 7 Regular orbits for two of the 38 planets in a planetary system with inverse force attraction42. The orbits with green are for twenty-five
’’revolving orbits’’ of one of the planets in the system, and the orbits in blue are correspondingly sixty-three revolving orbits of another planet.
With red is the (enlarged) center of mass of the planetary system.
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adjustments. The algorithm was used to simulate simple models of the Milky Way with the Hubble expansion of the universe, and
the galaxies were simulated for times that correspond to more than 25 Gyr.

The expansion of the space during the discrete Newtonian time propagation of a galaxy was obtained by comparing it with the
Hubble expansion of the Universe. A galaxy, l, far away in the universe moves away from the Earth at a speed proportional to its
’’proper distance", HrklðtÞ, to the Earth, k, measured at the ’’cosmological time" t, and this behavior is explained by an expanding
universe. The Hubble constant H is the expansion coefficient in Hubble’s law47,48

vHðrklðtÞÞ ¼HrklðtÞ ð48Þ
for the velocity, vHðrklðtÞÞ of a galaxy k a distance rklðtÞ from the Earth l. The Hubble expansion can be obtained by an intensive
expansion of the space independently of the baryonic matter in the universe

vHðrðtÞÞ ¼HrðtÞ; ð49Þ
by which the distance between pairs of positions rkðtÞ; rlðtÞ; or rkðtÞ; rkðt þ δtÞ increases with the Hubble velocity. Eq. (49) fulfills
the Cosmological principle and the Copernican principle for expansion of the universe.49 The Cosmological principle, which was first
formulated by Newton1 demands, that no place in the universe is preferred, and the Copernican principle demands, that no
direction in the universe is preferred. Eq. (49) will accelerate the expansion of the universe, and observations of galaxies indicate,
that the distances between the galaxies accelerate (dark energy).50,51

The Hubble constant H is quoted in km s�1Mpc�1, for the velocity in kms�1 of a galaxy 1 megaparsec (3:09� 1019 km) away. Its
value is52

H¼ 72:172:0 km s�1Mpc�1: ð50Þ
The Hubble velocity has no effect on the orbits of the planets and the stability of the Solar system, but it affects the stability of

galaxies.
The Hubble expansion is included in the discrete Newtonian dynamics.46 Newton’s discrete dynamics changes the position of an object

k. If the space expands monotonously over time with the Hubble velocity vH , then the expansion also changes the distance between two
positions. The new position rkðt þ δtÞ is the sum of the change due to the gravitational force on k and the contribution from the Hubble
expansion. The mean location of an object changes from rkðt � δt=2Þ ¼ ðrkðt � δtÞ þ rkðtÞÞ=2 at tA½t � δt; t� to rkðt þ δt=2Þ ¼ ðrkðtÞ þ
rkðt þ δtÞÞ=2 at tA½t; t þ δt� . The Hubble expansion changes the distance between the two positions by the Hubble velocity

vH ¼Hδrk ¼Hðrkðt þ δt=2Þ � rkðt � δt=2ÞÞ

¼ δtH
rkðt þ δtÞ � rkðtÞ

2δt
þ δtH

rkðtÞ � rkðt � δtÞ
2δt

¼ δtH
2

vkðt þ δt=2Þ þ δtH
2

vkðt � δt=2Þ: ð51Þ

By including the Hubble velocity, Eq. (51), in the Newtons algorithm, Eq. (5), and after a re-arrangement, one obtains the
algorithm for the classical mechanics with a Hubble expansion of the space included in the Newtonian dynamics

vkðt þ δt=2Þ ¼ ð1þ δtH=2Þvkðt � δt=2Þ þ δt=mkf kðtÞ
1� δtH=2

;

rðt þ δtÞ ¼ rðtÞ þ δtvðt þ δt=2Þ: ð52Þ
The discrete classical dynamics with Hubble expansion, Eq. (52), is still time-reversible, but it increases the velocities, the

momenta, and the angular momenta.
A galaxy, including the Milky Way, contains hundred of billion of stars, and a substantial amount of baryonic gas53,54 and it is not

possible directly to obtain the Newtonian dynamics of a galaxy with this number of objects. Instead, models of small ’’galaxies" of
hundred of objects in orbits around their center of gravity were simulated in,46 and in an expanding universe with various strengths of the
expansion. If these MD systems shall simulate the dynamics of a galaxy in the expanding universe, then onemust relate distances; times; and
Hubble expansion in the MD systems with the corresponding distances, times and Hubble expansion in a galaxy. Doing so the value of the
Hubble constant in the MD units for the models in46 of the Milky Way in the expanding universe was H¼ 5:� 10�871 in MD units.

Models of galaxies with H¼ 0; 5:� 10�8; 5:� 10�7 and 5:� 10�6, respectively, were simulated over a very long time with many
billion of time steps and corresponding to more than 25 billion years in cosmological time. Fig. 8 shows the number of objects in the
central part of the galaxies with a mean distance r(t) o 15000 E 15 kg parsec to the center of gravity of the MD system as a function of
time. The galaxies with withHr5:� 10�8 contained twice as many bound objects in the ’’halos" with distances 15000o r(t)o 100000.
The models of the Milky Way with Hr5:� 10�8 were rather stable even for times which corresponds to more than twice the age of the
Universe in contrast to galaxies withH45:� 10�8. The release of the last bound object in a galaxy withH¼ 5:� 10�7 is shown in Fig. 9.
The last bound object escaped the gravitational center, but first after t ¼ 7:5� 106 (3 billion MD time steps) or what corresponds toE 13
billion years after the galaxy was created. The rotating galaxies withHr5:� 10�8 released an object from time to time, but they contained
still many bound objects at the end of the simulations corresponding to more than 25 Gyr (Fig. 8).

The dynamics of galaxies in an expanding universe are often determined by gravitational and dark matter in an Einstein-de
Sitter universe,44 or alternatively by modifying the gravitational long-range attractions in the Newtonian dynamics (MOND).45

The Milky Way has, however, only performedE 60 rotations after its creation and the galaxy is hardly in any kind of a steady state,
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and the simulations in46 with pure gravitational forces indicate, that the explanation for the dynamics of galaxies may be that the
Universe is very young in cosmological times. Although the models of the Milky Way release objects from time to time they still
contained many bound objects at 25 Gyr, which is almost twice the age of the Universe. The Hubble expansion will, however,
sooner or later release the objects in the galaxies, but the simulations indicate that this will first happen in a faraway future.

5 Conclusion

Computer simulation of the time evolution in a complex classical system, Molecular Dynamics (MD), is a standard method, and it
is used in numerous scientific articles in Natural Science. Newton’s discrete algorithm, Eq. (3) is used in almost all the simulations,
albeit it is not acknowledged nor known that it was Newton who proposed it at the beginning of his book Principia (Section 2).
Usually, the computational algorithm in the MD simulations is even not mentioned in the articles. MD is a standard tool and the
algorithm is a ’’black box". MD with Newton’s discrete algorithm from Propostion I is, however, exact in the same sense as

Fig. 8 Number of objects in the ’’disk’’ in the galaxies with mean distances to the mass centers of the galaxies as a function of time. The
systems were exposed to different strengths of Hubble expansions given in the figure.

Fig. 9 The last bound object in an unstable galaxy in a fast expanding universe with H ¼ 5:� 10�7. The object escaped the gravitational center
(enlarged red sphere) after what corresponds to E 13 billion years after the galaxy was created. The first part of its dynamics
(0oto6:5� 106E10:9 Gyr) is shown with green, and the escape from the center of gravity is shown with blue. The galaxies are, however,
stable for a Hubble expansion ten times weaker and equal to the Hubble expansion of our Universe.

342 Discrete Molecular Dynamics

Author's personal copy



Newton’s analytic counterpart, the Classical Mechanics. The discrete dynamics is time reversible, symplectic, and has the same
invariances as the analytic dynamics (Section 3.1).

There is, however, no qualitative difference between the two dynamics. This is due to the fact, that there exists a ’’shadowHamiltonian’’
nearby the Hamiltonian for the analytic dynamics. The shadow Hamiltonian can be obtained by an asymptotic expansion, and the
positions generated by the discrete Newtonian dynamics are located on the analytic trajectories for the shadow Hamiltonian (Section 3.2).

It is only possible to obtain the solution of Newton’s classical differential equations for a few simple systems, e.g. for a
harmonic oscillator. But the discrete Newtonian dynamics can be obtained for almost all classical systems without any problems,
e.g. for complex celestial systems (Sections 4.1, 4.2, and 4.3).

The fact that there exist two equally valid formulations of classical dynamics, the discrete Newtonian dynamics and the analytic
Classical Mechanics raises the question: What is the classical limit of quantum mechanics? Classical Mechanics and analytic
quantum mechanics are connected by the Wigner expansion,31 and Lee and coworkers have formulated a discrete nonrelativistic
quantum mechanics,32–34 where Newton’s discrete dynamics is the classical limit (Section 3.3). The difference in the energy
between the analytic energy and the energy obtained by Eq. (20) for a time quant tp is of the order t2p . With tp equal to Plank’s time
quant the difference is absolute marginal. The Heisenberg uncertainty between positions and momenta is of the order tp and this
uncertainty is an inherent quality of discrete dynamics. But the analytic quantum electrodynamics (QED) is in all manner fully
appropriate and there is a lack of justification for preferring discrete quantum mechanics.
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Appendix A Verlet algorithm

The first Molecular Dynamics simulation of systems of particles with analytic potentials was published in 1964 by A. Rahman,55 where he
used a higher-order predictor-corrector algorithm for the determination of the new positions rNðt þ δtÞ from the previous discrete positions.
Loup Verlet (1931–2019) published in 1967 the article Computer ’’Experiments" on Classical Fluids. I. Themodynamical Properties of Lennard-Jones
Molecules,2 where his algorithm, Eq. (4),

rðt þ δtÞ ¼ 2rðtÞ � rðt � δtÞ þ δt2

m
fðtÞ ðA:1Þ

was introduced without any explanation. Loup Verlet was in the mid-nineteen hundred and sixties affiliated with J. L. Lebowith at Yeshiva
University, NY. Lebowith gave a preliminary report of Verlet’s simulation at a conference in Copenhagen in 1966, where I became acquainted
with the Verlet algorithm and Discrete Molecular Dynamics. According to my supervisor at Copenhagen University Eigil L. Prae stgaard, who
was a postdoc at Yeshiva University in the same period, the algorithm was derived by a forward and backward Taylor expansion

rðt þ δtÞ ¼ rðtÞ þ δt
∂rðtÞ
∂t

þ 1
2
δt2

∂2rðtÞ
∂t2

þ 1
6
δt3

∂3rðtÞ
∂t3

þOðδt4Þ

rðt � δtÞ ¼ rðtÞ � δt
∂rðtÞ
∂t

þ 1
2
δt2

∂2rðtÞ
∂t2

� 1
6
δt3

∂3rðtÞ
∂t3

þOðδt4Þ; ðA:2Þ

and the algorithm was obtained from the sum rðt þ δtÞ þ rðt � δtÞ and δt2∂2r tð Þ=∂t2 ¼ δt2
m f tð Þ. All the odd terms in A.2 cancel, and the

Verlet algorithm is a four-order time symmetric predictor of the positions at the analytic trajectories. The scientific community and Verlet were
first much later aware, that it actually was Newton who first published the geometric formulation of the algorithm in Proposition I.56

Today almost all MD simulations in physics and chemistry are performed with the algorithm, which appears under a variety of
different names.
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